FUNCTION OF VITAMIN A IN THE SYNTHESIS OF 3*-PHOSPHOADENOSINE-5*-PHOSPHOSULFATE*

Partab T. Varandani, George Wolf and B. Connor Johnson

Radiocarbon Laboratory and the Department of Animal Science University of Illinois Urbana, Illinois

Received July 1, 1960

Previous reports from this laboratory have presented evidence that the incorporation of S³⁵-sulfate into the mucopolysaccharide (MPS)** obtained from vitamin A-deficient rat colon segments and colon homogenates was about half that from normals (Varandani, Wolf and Johnson, 1958). This lowered incorporation could be restored specifically by the <u>in vitro</u> addition of vitamin A (Varandani, Wolf and Johnson, 1959; Wolf and Varandani, 1960). Vitamin A is involved neither in the amination of hexose nor in the transfer of sulfate to p-nitrophenol acceptor (Wolf, Varandani and Johnson, 1960). Evidence is now presented which indicates that the block in MPS synthesis due to vitamin A is at the sulfate activation step, that is, in the synthesis of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), and that this defect can be corrected by the <u>in vitro</u> addition of vitamin A. Evidence is also presented that in the overall MPS-synthesizing system, when PAPS³⁵ was used instead of S³⁵O₄ as sulfate source, no differences were found between colon mucosal homogenates from deficient and normal animals in the transfer of S³⁵ to form labeled MPS.

Vitamin A-deficient rats were prepared as described by Wolf, Lane and Johnson (1957). Vitamin A-adequate animals were obtained by feeding 6000 I.U. of vitamin A to pair-selected deficient rats of the same weight as those left deficient, 4 days prior to decapitating them for experimentation. The excised colons from the

^{*}This investigation was supported in part by grants from the National Vitamin Foundation and the U. S. Atomic Energy Agency, Contract AT (11-1)-67, Project 2.

^{**}The following abbreviations are used: MPS, mucopolysaccharide; ATP, adenosine triphosphate; DPN, diphosphopyridine nucleotide; PAPS, 3'-phosphoadenosine-5'-phosphosulfate.

deficient and paired vitamin A-adequate rats were cleaned of feces by washing with ice-cold 0.9% saline and were homogenized in 3 volumes of homogenizing medium (Zamecnik and Keller, 1954). The debris and nuclei were removed by centrifuging for 15 minutes at 600 x g, and the supernatant homogenates were incubated as described below.

Synthesis of PAPS³⁵. The method of synthesis of PAPS³⁵ was similar to that described by Robbins and Lipmann (1957). The incubation mixture consisted of carrier-free S³⁵-sulfate, 8.4 x 10⁵ cpm in Experiment I and 16.8 x 10⁵ cpm in Experiment II (obtained from Abbott Laboratories, Oak Ridge, Tenn.), 10 µmoles of ATP, 5 µmoles of MgCl₂, 5 µmoles of cysteine, 100 µmoles of imidazole-HCl (pH 7.0) and colon homogenate containing 2 mg of protein from deficient or vitamin A-adequate rats, made up to a final total volume of 0.5 ml. The incubations were carried out at 37° under 95% O₂ plus 5% CO₂ for 30 minutes. The reaction was stopped by heating at 95° for 2 minutes and chilling in ice. The PAPS³⁵ synthesized was isolated by paper electrophoresis, carried out on Whatman paper No. 3 at 300 volts in citrate buffer (0.05 M, pH 5.6). PAPS³⁵ moved 20 cm in 6 hours. The paper was dried in air and PAPS³⁵ was assayed as described previously (Wolf, Varandani and Johnson 1960).

Table I Effect of Vitamin A Deficiency on PAPS³⁵ Synthesis

Briedt Or	Alfamili & periciench ou 1140	Cynthesia	
Vitamin A Status of Rats	Addition	PAPS ³⁵	
		Expt. I	Expt. II
		cpm/mg protein	
Adequate	-	19,200	59,000
Deficient	-	8,440	28,700
Deficient	Vitamin A, 20 µg in Propylene Glycol, 5 µl	24,300	54,100
Deficient	Propylene Glycol, 5 μl	**	31,400

The incubation mixture is described in the text. Activity added: Expt I, 8.4×10^5 cpm; Expt. II, 16.8×10^5 cpm.

Results in Table I show that the amount of S³⁵ incorporated into PAPS³⁵ in the deficient homogenate is about half that of the normal. The <u>in vitro</u> addition of vitamin A (dissolved in propylene glycol) restored the synthetic ability of the deficient homogenates, whereas propylene glycol had no effect.

Since the vitamin A-adequate animals were deficient animals which had been given vitamin A 4 days prior to killing, the in vivo response could be due only to the administered vitamin A.

Synthesis of MPS. If vitamin A functions in the synthesis of PAPS, no differences should be expected in the MPS synthesis when PAPS³⁵ is used as the source of S³⁵. Such indeed is the case. PAPS³⁵ (52,400 cpm) was incubated with 5 µmoles of MgCl₂, 5 µmoles of cysteine, 10 µmoles of glucose, 1 µmole of glutamine, 5 µmoles of DPN, and deficient or normal colon homogenate containing 2 mg protein; final volume 0.7 ml and pH 7.4. The incubation was carried out at 37° for 1 hour under 95% O₂ and 5% CO₂. The reaction was stopped by adding an equal volume of 8% trichloroacetic acid. MPS³⁵ was isolated by descending chromatography in 1 M ammonium acetate:ethanol, 2:5 (Wolf, Varandani and Johnson, 1960) and by ethanol: benzene, 1:1 precipitation (Varandani, Wolf and Johnson, 1958). Table II shows that the transfer of PAPS sulfate into MPS by normal and deficient colon homogenates was not affected by the vitamin A status of the animals. This confirms our previous results in which an artificial acceptor p-nitrophenol had been used (Wolf, Varandani and Johnson, 1960).

Table II Effect of Vitamin A Deficiency on MPS Using PAPS³⁵ as a Source of Sulfate

Vitamin A Status	Mucopolysaccharide		
	By Chromatography	By Precipitation	
	срт	cpm	
Normal	1020	795	
Deficient	1020	828	

The incubation mixture is described in the text.

References

Robbins, P. W. and F. Lipmann, J. Biol. Chem., 229, 837 (1957).

Varandani, P. T., G. Wolf and B. Connor Johnson, Abstracts, 134th American Chemical Society Meeting, Chicago, 56C (1958).

Varandani, P. T., G. Wolf and B. Connor Johnson, Fed. Proc., <u>18</u>, 549 (1959).
Wolf, G., M. D. Lane and B. Connor Johnson, J. Biol. Chem., <u>225</u>, 995 (1957).

Wolf. G. and P. T. Varandani, Biochim. Biophys. Acta, in press (1960).

Wolf, G., P. T. Varandani and B. Connor Johnson, Biochim. Biophys. Acta, in pres (1960).

Zamecnik, P. C. and E. B. Keller, J. Biol. Chem., 209, 337 (1959).